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(With an Appendix by T. D. PENDLE) 

1. INTRODUCTION 

Notwithstanding the widespread use of foamed 
elastic materials, little attention appears to have 
been paid to their mechanics of deformation apart 
from the work of Conant and Wohler’ and Talalaye2 
In  particular, there seems to be no quantitative the- 
ory to  account for the marked dependence of elastic 
properties on density and type of strain. In  the 
present paper a theoretical treatment is presented on 
the basis of a model consisting of a large number of 
thin threads joined a t  their ends to form a three- 
dimensional network. Experimental measurements 
of the load-deformation relations for natural rubber 
foams prepared from latex are described also, and 
compared with the predictions of the theoretical 
treat men t . 

The load-deformation relations obtained for one 

Fig. 1. Load-deformation relations in simple extension 
and compression for a natural rubber foam having a volume 
fraction of rubber of 0.125. 

rubber foam of relatively low density are shown in 
Figure 1; they are typical of those obtained on a 
variety of foamed elastic materials. In  extension 
the relation is found to  be substantially linear and a 
value of Young’s modulus characteristic of the foam 
may be calculated. In  Section 2 below the depend- 
ence of Young’s modulus of the foam on the density 
is derived for the proposed model structure, and in 
section 3 measured values for a wide range of densi- 
ties are compared with the predicted values. 

In  compression the load-deformation relation is 
seen to be markedly nonlinear, resembling that for a 
typical collapsing process such as the buckling of a, 

thin strut.’ The proposed structure may be en- 
visaged to undergo compression by buckling of the 
thin threads, and a corresponding treatment of the 
compression of a network is described in Section 4. 
Experimentally-determined load-deformation rela- 
tions in compression are described in Section 5 and 
compared with the predictions of the theory. 

The load-deformations were found to be some- 
what irreversible as is seen in Figure 1. Although 
the separation between the load-increasing and 
load-decreasing curves is not large, it is consider- 
ably greater than that found in similar solid rubber 
vulcanizates. For consistency, only those measure- 
ments taken as the load increased have been con- 
sidered below. 

2. SMALL EXTENSIONS OF A NETWORK OF THIN 
THREADS 

General Calculation 

The model structure considered consists of a 
large number of thin threads of unstrained length IC 
and cross-sectional area A ,  connected at their ends 
by substantially undeformable volumes (Fig. 2 ) .  
The presence of these dead volumes causes the 
strains in the threads to be greater than the aver- 
age strain for the whole element consisting of thread 
and dead volume. If the diameter of the dead 
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Fig. 2. Sketch of proposed model structure. 

volume is D, and ro is the distance between the 
dead volume centers for a single element, 

ro = lo + D 

When strained, ro becomes r and 

r = Z + D  

where I is the strained length of the thread. 
For small strains it is assumed that no buckling 

occurs and that the threads are in simple extension 
or compression. The strain energy in the thread is 
therefore given by 

w = '/z ZO Y A  ( 1  + D/W [(r/rO) - 1 l 2  
where Y is Young's modulus for the material. 

move afKnely with the bulk, 

r2 = ro2 (X12 sin2 d cos2 B + 
where 11, X2, and A3 are the bulk extension ratios, 
and e and d are polar coordinates. 

For small strains, on putting r = ro + Ar, 11 = 1 
+ el, etc., we have 

( 1 )  

Assuming that the centers of the dead volumes 

sin2 6 sin2 0 + 132  cos2 d) (2) 

Hence, from eq. (2) ,  

2r (Ar/ro2) = 2 (el sin2 65 cos2 0 + e2 sin2 d sin2 6 
+ e3 cos2 d) 

when All 1 2 ,  and A3 are nearly unity. 
ing for A?-/ro, eq. (1) takes the form 

w = '/z ZO Y A  ( 1  + D/Eo)~ (ro/r)2 [el sin2 d cos2 B 

On substitut- 

+ e2 sin2 6 sin2 e + e3 cos2 dI2 (3)  
As only small strains are considered, terms of 

order e3 and above may be neglected. The factor 
(ro/r)2 is of order ( 1  + e) ,  whereas the last factor 
on the right-hand side of eq. (3)  is of order e2. The 
term (ro/r)2 can therefore be approximated to unity 
with the required accuracy. 

The total strain energy is given by 

w = 2 J'"w sin d.dB.dd 

where N is the number of threads per unit volume. 
Substituting for w from eq. (3) ,  and integrating, 

W = N ZO Y A  (1 + D/Zo)2 [3(e12 + ez2 + 
+ 2(ele2 + 8283 + e~e1>1/30 (4) 

Equation (4) describes the behavior of the model 
structure under all types of deformation provided 
the strains are small. In particular, Poisson's ratio 
has the value '/4 and Young's modulus is given by 

7r 

Y F / Y  = N A  Zo(1 + D/Z0)'/6 (5) 
In order to obtain a relation between YF and the 

volume fraction ur of material in the foam, a more 
detailed model structure must be assumed. How- 
ever, in the limiting case when vr is small, it seems 
highly probable that D,  the diameter of the dead 
volumes, will become negligible in comparison 
with ZO whatever the detailed structure may be. 
Hence, when vr is small, 1 + D/Zo 3 1, NAZO + u. 
and from eq. (5), YF/Y = vr/6. 

Particular Model 

It is assumed that n threads, each of length lo 
and cross section A ,  enter each dead volume, and 
that each of these may be approximated by a sphere 
of surface area nA. 

Thus 

4 ~ ( D / 2 ) ~  = nA 

D = ( n A / ~ ) l / ~  
1.e. 

A representative volume of the foam may be 
taken as a sphere of radius r0/2 concentric with a 
dead volume. The volume of this sphere is given 
by 

V = "3 [(10/2) + (D/2)I3 

and the volume of material contained in it is 

V,  = nAZo + 4/3 7r (D/2)3 

The volume fraction of material in the foam is thus 

ur = VJV = (3P2 + P 3 ) / ( l  + P)3  (6) 

where 
P = (nA/7r Zo2)'/2 = D/lo 

The factor NAZo in eq. (5) is the volume frac- 
tion of material in the foam which is in the form of 
threads, and is given by 

NAZo = 3p2/(1 + @)3 
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The factor (1 + D/Z,J2 is equal to (1 + p)’. 
stituting in eq. (5) ,  we obtain 

Sub- 

Y d Y  = P2/2 (1 + a) (7) 
Equations (6) and (7) thus determine Yp/Y as a 

function of vr, since both are given as explicit func- 
tions of p. It is interesting to note that the quanti- 
ties n, A ,  and 10 do not appear explicitly in the final 
relations. Moreover, if a more restrictive model is 
assumed in which the dead volume is cubical in 
form, having six threads emerging from it, and the 
corresponding representative volume of the struc- 
ture is taken to be a cube of side TO centered on the 
dead volume, the resulting relations for vr and Yp/Y  
are found to be identical with those given in eqs. (6) 
and (7). It appears, therefore, that the form of 
these relations is not critically dependent on the de- 
tailed structure. 

3. EXPERIMENTAL MEASUREMENTS AT SMALL 
DEFORMATIONS 

Simple Extension 

Samples of vulcanized natural rubber foam of 
varying densities were prepared by Mr. T. D. 
Pendle of these Laboratories in the form of sheets 
about 2 cm. thick. The mix formulation used and 
the method of preparation are given in the Appen- 
dix. The density of each foam was calculated from 
measurements of the dimensions and weight of a 
test-piece cut from each sheet, consisting of a prism 
about 20 cm. in length, 3 ern. in width, and 2 cm. in 
thickness. The test-pieces were then suspended 
from fixed upper clamps while tensile loads were 
applied by means of weights added to light lower 
clamps. The loads were increased by regular 
amounts, each Ioad being maintained for about one 
minute before the corresponding extension was meas- 
ured over the central region of the test-piece by 
means of a travelling microscope. The load-exten- 
sion relations were found to be substantially liuear 
over the range 0 to 10% extension and from the 
measured slopes values of Young’s modulus were 
calculated for each foam. The values so obtained 
are given in Table I, together with the values of 
the volume fraction vt of rubber in the foams, 
calculated from the measured densities. 

A sheet of solid rubber was obtained from the 
latex compound used in preparing the rubber foams 
by slowly drying the latex in a flat dish. It was then 
vulcanized by heating under similar conditions to  
those used in preparing the foams. In  order to  ex- 
amine whether the foams and the solid rubber were 
vulcanized to  a similar extent, measurements were 
made of the equilibrium swelling of test-pieces in 
benzene, the measured values of the equilibrium 
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Fig. 3. Experimental relation between Young’s modulus 
YF of the rubber foam, relative to that of the solid rubber 
Y ,  and the volume fraction vr of rubber in the foam. Full 
curve: Theoretical relation given by eqs. (6) and (7). 
Broken curve: Limiting form of theoretical relation for 
low foam densities. 

VT 

linear swelling ratio X, being given in Table I. It is 
clear that an equivalent degree of vulcanization 
was achieved for the rubber foams and the solid 
rubber, and that little variation occurred between 
different samples of foam. The solid rubber vul- 
canizate, and the value of Young’s modulus‘ deter- 
mined experimentally for it, namely 26.4 kg./cm.*, 
may therefore be considered representative of the 
vulcanized rubber of which the foams are com- 
posed. 

In  Figure 3 the experimen tally-determined values 
of the ratio YF/Y of Young’s modulus of the rubber 
foam to that of the solid rubber are plotted against 
the values of the volume fraction vr of rubber in the 
foam. The theoretical relation given in eqs. (6) 
and (7) is represented by the full curve of Figure 3, 
and it is seen to describe the experimental results 
with considerable success. 

It seems likely that the linear dimensions of the 
dead volumes in the proposed model structure will 
not be so large as the distances over which they ef- 
fectively preclude any deformation. A slight modi- 
fication of the theoretical treatment in which such 
an inequality was introduced was found to  give 
improved agreement with the experimental results. 
However, in view of the somewhat arbitrary nature 
of the assumptions made and the satisfactory agree- 
ment obtained with the simple treatment, this ex- 
tension of the theory is not considered further. 

Poisson’s Ratio 
Measurements were made by means of a travel- 

ling microscope of the lateral contractions over the 
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TABLE I 
Measurements in Simple Extension 

Linear swelling Young’s Poisson’s 
Volume fraction of ratio in modulus ratio, 

Tes t-piece rubber, V? benzene, A, YF (kgJcm.2) Y,/Y U 

Solid rubber 1 1.560 26.4 - - 
Foam 1 0.093 1.583 0.425 0.0161 0.35 

2 0.101 1.628 0.479 0.0182 0.43 
3 0.110 1.586 0.644 0.0254 - 
4 0.128 1.582 0.505 0.0192 0.32 
5 0.196 1.562 1.79 0.068 0.35 
6 0.197 1.595 1.67 0.063 0.33 
7 0.205 1.569 1.51 0.057 0.33 
8 0.223 1.589 1.77 0.067 0.29 
9 0.240 1.564 2.03 0.077 0.34 

10 0.249 1.588 2.50 0.095 0.32 
11 0.362 1.522 3.55 0.135 0.35 
12 0.401 1.570 5.36 0.204 0.34 
13 0.422 1.589 5.56 0.211 - 
14 0.464 1.578 7.58 0.288 0 28 
15 0.568 1.580 8.32 0.315 0.31 

Mean value for u: 0.33 
__ 

central region of the test-piece when small exten- 
sions were imposed, of the order of 10%. Values of 
Poisson’s ratio calculated from the measurements 
are given in Table I. No systematic trend with 
increasing density of the foam appears to exist, 
although considerable scatter is evident and is 
ascribed to the large errors involved in measuring 
small changes in dimensions by the present method. 
The average value obtained for u was 0.33, com- 
pared with the theoretically predicted value of 0.25. 
The differences between load-deformation relations 
calculated using the two values would be insig- 
ni fican t . 

4. COMPRESSION OF A NETWORK OF THIN 
THREADS 

The model structure considered is similar to that 
used in Section 2 for the calculation of the behavior 
under small strains in so far as the elements them- 
selves are concerned. However, in the present 
case a further simplification is necessary. The 
number of threads connected by each dead volume 
is assumed to be 6, and they are assumed to be 
directed perpendicular to each other, with one pair 
parallel to the direction of compression. Thus the 
compressive stress is taken by one-third of the 
threads, the other two-thirds being inert, and nei- 
ther extended nor compressed. This assumption 
is consistent with experiment in as much as little 
alteration in the dimensions perpendicular to the 
compression is observed. 

The deformation of the bulk is denoted by the 
extension ratio a (a < l), related to the exten- 

sion ratio X in the threads by 

a = (I + D)/(lo + 0) = (1 + p ) / ( l  + P)  (8) 

where X = Z/&, and p = D/Zo. The dead volumes 
are assumed to be cubes of side D, such that the 
cross-sectional area A of the threads is given by 

A = D2 (9) 
A representative volume is taken as a cube of side 
lo + D concentric with one dead volume and with 
its edges parallel to the threads. The total volume 
enclosed is (lo + D)3, including a volume of mate- 
rial given by (D3 + 3AZo). Hence 

vr = (D3 + ~ A ~ o ) / ( E o  + D)3  
= ( P 3  + 3P2)/(1 + P I 3  (10) 

on substituting for A from eq. (9). 
The deformation is attributed to buckling of the 

threads. The force Fb on each thread is therefore 
governed by the bending moments developed and 
takes the form 

FD = YAK2*lo”*f(X) 

where A K 2  is the moment of inertia of the thread 
cross section and f(A) is an unknown function of A. 
It is clear on dimensional grounds that x is -2. 
The average stress across the face of the repre- 
sentative cubical volume is therefore given by 

t = Fo/(lo + D)2 = YAK2*f(A)/lo2 (lo + D)2  (11) 

If the shape of cross section of the threads re- 
mains similar for all the foams, then 

A K 2  = mA2 
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where m is a numerical constant. 
therefore, 

From eq. (9), 

A K 2  = mD4 

Substituting for AK2 in eq. (11) and absorbing the 
constant m in f (X) ,  we obtain 

t /Y = D4*f(X)/Zo2 ( l o  + D)z  = p4*f(X)/(l + p)' (12) 

Equations (€9, (lo), and (12) give the form of the 
load-deformation relation in terms of an unknown 
function f(X). This latter should, however, be 
independent of Y and vr, and so in principle should 
be obtainable from a single compression curve at a 
particular value of vl. 

When v r  is small, p is small and v r  is approxi- 
mately given by 3p2. Also a + X, so that t/Y 
at a given overall compression ratio should vary as 
V,'. 

Contribution to Deformation from Simple 
Compression 

In addition to the deformation considered 
above, arising from buckling of the threads com- 
prising the network, some contribution to the total 
deformation might be expected due to simple com- 
pression. Under small strain conditions the two 
components may be assumed additive. The corre- 
sponding bulk extension ratio a' will therefore be 
given by 

1 - a' = 1 - a + t /Yp (13) 

where a is the bulk extension ratio associated with 
buckling of the threads and YF is Young's modulus 
of the foam. 

5. EXPERIMENTAL MEASUREMENTS IN 
COMPRESSION 

Determination of f(X) 
From corresponding measurements of the com- 

pressive stress t and the ratio a' of the compressed 
height to the initial height of a test-piece of the 
foamed material, values of a may be calculated by 
means of eq. (13), using the value of YF found ex- 
perimentally from measurements in simple exten- 
sion. Corresponding values of X may then be ob- 
tained from eq. (8). 

From eq. (12) we have 

Hence corresponding values of f(X) and X may be 
determined from experimental measurements of t 
and a' on any one foam. 

Measurements were made of the load-deforma- 
tion relations in compression for test-pieces of 
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Fig. 4. Experimental relation betweenf(h) and A, obtained 

from the load-deflection relations in compression for six of 
the lightest foams. 

several of the foams described in Section 3. The 
test-pieces consisted of prisms about 4 cm. in height 
and of square cross section having sides of length 
about 5 cm. The compressive loads were applied 
by means of weights, the corresponding deforma- 
tions being measured with the aid of a travelling 
microscope. For the foams of lowest density, the 
term t/YF in eq. (13) was relatively small. The 
values calculated for a, and hence X, may thus 
be considered more accurate for these materials. 
Corresponding values of f(X) and X were therefore 
calculated as described above from the load-de- 
formation relations obtained for six of the lightest 
foams. The six relations between f(X) and X 
obtained in this way were found to be closely simi- 
lar. In Figure 4 a composite curve representing 
the best fit to the experimentally-obtained relations 
is shown, the separate relations being omitted for 
clarity. 

The relation shown in Figure 4 is of the general 
form which might be expected for a buckling proc- 
ess. However, for a simple system such as a thin 
strut in compression, the decrease in slope observed 
as X decreases from unity would be expected to be 
much more pronounced, amounting to an abrupt 
reduction to zero at the axis X = 1. The gradual 
decrease in slope shown in Figure 4 as X decreases 
from unity presumably reflects the distribution of 
effective thread dimensions in the foams examined. 
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Fig. 5. Load-deflection relations in compression. The 
full curves are calculated from theory, using the values of 
f(k) given in Fig. 4. 

4' 

Fig. 6. Load-deflection relations in compression for Foam 
14 ( Y ,  = 0.464) and Foam 1 ( Y ~  = 0.093). The full curves 
are calculated from theory using the values of f(X) given in 
Fig. 4. 

However, the good agreement found for foams of 
varied density indicates that the distribution is 
characteristic of the material and method of prepa- 
ration employed. The relation obtained for f(A) 
may therefore be considered representative of latex 
foam rubber. 

A more regular structure, such as that which ap- 

pears to exist in polyurethane foams, might be 
expected to yield a relation for f(A) more closely 
resembling the ideal buckling form. Although the 
imperfect elastic behavior of polyurethane mate- 
rials precludes a satisfactory experimental deter- 
mination of f (A), the load-deformation relations 
obtained in compression appear to be in accord 
with such a relation since they exhibit the non- 
linearity characteristic of collapsing processes to a 
considerably greater extent than the latex foam 
materials. 

Comparison of Experimental Measurements with 
Theory 

From the experimentally-obtained composite 
curve for f(A) as a function of A given in Figure 4, 
it is possible to calculate the compressive stress t 
at any value of X by means of eq. (12) and the 
corresponding bulk extension ratio a' by means of 
eqs. (8) and (13). The load-deflection relations 
calculated in this way for the foams examined are 
represented by the full curves of Figure 5 .  The 
applied loads are plotted on a logarithmic scale in 
view of the wide range of values employed. 

The experimental measurements of load and 
deformation are represented by open circles in 
Figure 5 ;  considering the wide range in hardness, 
about 100 to 1, covered by the foams, the agree- 
ment with the calculated relations is very satis- 
factory. There are also variations in the shape of 
the load-deformation curve for foams of different 
densities which the theory attempts to account for. 
In Figure 6 the experimental measurements for 
foams 1 and 14 are plotted on linear scales, together 
with the theoretical relations. The theory pre- 
dicts the qualitative change in form satisfactorily. 

Some departures from the theory may be ob- 
served in Figure 5 ,  particularly for the dense mate- 
rials at  large compressions. Under these coiidi- 
tions the simple compression component of the de- 
formation [ t /YF in eq. (13)] becomes large, and at 
high strains the assumption that this component 
is proportional to t is probably seriously in error. 

6. DISCUSSION OF RESULTS 

The theoretical model used is a very idealized 
representation of an actual foam rubber, which is 
far from homogeneous, the threads of rubber and 
the interstices being of a wide range of sizes and 
shapes. Such variations cannot easily be taken 
into account in a theory, and no attempt has been 
made to do so. In view of this, the agreement ob- 
tained with theory for the Young's modulus of 
materials of different densities (Fig. 3) is very satis- 
factory, particularly as no arbitrary constants are 
involved. and suggests that the basic concepts of 
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the structure and mode of deformation are correct. 
In the case of compression, the detailed struc- 

ture and the inhomogeneities of the foam probably 
affect the shape of the stress-strain curve mark- 
edly. This leads to the presence of an arbitrary 
function f(A) which will be a suitable average of 
these effects. However, the theory gives unequi- 
vocally the variation of hardness with density, and 
in view of the wide range in hardness covered, the 
agreement may be considered good. This sup- 
ports the premise that the deformation is primarily 
due to buckling of the elementary threads. 

This work forms part of a program of research under- 
taken by the Board of the British Rubber Producers’ Re- 
search Association. The authors are indebted to  Mr. T. D. 
Pendle for preparation of the samples of latex foam. 

APPENDIX 
PREPARATION OF LATEX FOAM SAMPLES 

T. D. PENDLE 

The samples of foam were all prepared by the 
sodium silicofluoride method from a SO%, centri- 
fuge-concentrated, ammoniated natural rubber 
latex. The ammonia content was reduced to 0.2% 
by the addition of formaldehyde solution, and the 
following ingredients were added per 167 g. of 
latex, i.e., per 100 g. rubber: 

10 yo solution of potassium ricinoleate 7 g. 
3 g. 

2.5  g. 
5% solution of cetyl trimethylammonium bromide 

20% solution of potassium chloride 

The latex was whisked into a foam by means of a 
mechanical beater, the density of the products 
being varied by varying the amount of foaming. 
A 50% dispersion of vulcanizing ingredients and a 
25% dispersion of sodium silicofluoride were then 
added to give the following quantities per 100 g. of 
rubber: 

Sulfur 2.5  g. 
Zinc oxide 3 g. 
Zinc diethyl dithiocarbamate 1 g. 
Zinc 2-mercaptobenzothiazole 0 . 3  g. 
sym-Di-j+naphthyl-p-phenylene diamine 0 .5  g. 
Sodium silicofluoride 1 to 1.5  g. 

The foam was then poured into a mold and al- 
lowed to set. Vulcanization was effected by heat- 
ing for 30 minutes at a temperature of 100°C. in 
steam. The vulcanized foam was finally washed 
thoroughly in cold water and dried in an air oven 
at 60°C. 

In order to produce foams of density greater 
than 0.3 g . / ~ m . ~ ,  the above formulation had to be 
modified slightly. The amount of foaming agent 
(potassium ricinoleate) was drastically reduced, 
and up to 1.5% of a thickening agent (ammonium 

polymethacrylate) was added to increase the vis- 
cosity of the foam. 
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Synopsis 
A theoretical treatment is given which predicts the be- 

havior of a foamed elastic material on the basis of a model 
consisting of a network of thin threads. Two cases are 
considered: ( 1 )  small strains, and ( 2 )  finite compressions, 
when the major part of the deformation of the threads is 
attributed to  buckling. The behavior is given in terms of 
Young’s modulus of the matrix and the density of the foam. 
Measurements of the load-deformation relations for small 
tensile strains and finite compressions are described for 
natural rubber foams prepared from latex. A wide range 
of density is covered (0.094.57), giving a variation of coni- 
pression hardness of about 100: 1. Satisfactory agreement 
with theory is found for both the cases considered, indicat- 
ing that the basic concepts of the structure and mode of de- 
formation are correct. 

Ri%um6 
Un traitement theorique est donne en vue de prevoir le 

comportement d’un materiau spongieux Blastique sup la 
base d’un modble consistant en un reseau de fils fins. Deux 
cas sont consider&: ( 1 )  faibles tensions et  ( 2 )  compressions 
d6termin6es, lorsque la partie principale de la deformation 
des fils est due au plissement. Le comportement est 
exprime sous la forme du module de Young de la matrice e t  
de la densite de la masse. Des mesures des relations charge- 
deformation sous de faibles forces de tension et des com- 
pressions limit6es sont decrites pour des mousses de caout- 
chouc prepares au depart de latex. Un grand domaine de 
densite est couvert (0.094.57), permettant une variation 
de force de compression d’environ 100: 1. Un accord satis- 
faisant avec la theorie a Bt6 trouv6 pour les deux cas con- 
sideres, ce qui demontre que les concepts de base pourDa 
structure et les modes de deformation sont corrects. 

Zusammenfassung 
Es wird eine theoretische Untersuchung durchgefuhrt, die 

unter Zugrungelegung eines Modells, das aus einem Netz- 
werk dunner Faden besteht, die Voraussage des Verhaltens 
eines elastischen Schaumstoffes gestattet. Zwei Falle 
werden betrachtet: ( 1 )  kleine Verformung und ( 2 )  endliche 
Zusammendriickung, bei welcher der Hauptteil der De- 
formation der Faden einer Verbiegung zugeschrieben wird. 
Das Verhalten wird als Funktion des Young-Moduls der 
Matrix und der Dichte des Schaumes beschrieben. Messun- 
gen der Beziehung zwischen Belastung und Deformation 
bei kleinen Zugspannungen und endlicher Zusammendruck- 
ung werden fur Naturkautschuk-Schaumstoffe wieder- 
gegeben, die aus Latex dargestellt wurden. Es wird ein 
weiter Dichtebereich untersucht (0.094.57), entsprechend 
einer Variierung der Kompressionshiirte etwa im Verhaltnis 
100: 1. Fur beide in Betracht gezogene Falle wird befriedi- 
gende ubereinstimmung mit der Theorie gefunden, was 
dafur spricht, dass die Grundannahmen beauglich der 
Struktur und der Art und Weise der Verformung korrekt 
sind. 
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